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Introduction 

In 1936 Birkhoff and von Neumann discovered that the 
experimental propositions of quantum system represented by the set of all 
projections in a seperable, infinite dimensional complex Hilbert space (or 
equivatently by that of its all closed subspaces) was not a Boolean 

-algebra but a highly non-distributive orthocomplemented lattice [7]. It 
should be noted that the collection of all projections on a Hilbert space form 
a complete orthomodular atomic order symmetric lattice, which is of course 
not modular. But they did not abandon the idea that the lattice of quantum 
mechanical propositions was modular [5]. On the other hand if a logic is 
modular, and separable, then it follows from a general result of Kaplanasky 
[19] that it is a continuous geometry in the sense of von Neumann. 
Whether the logic of any atomic system may be assumed to be an 
orthocomplementad continuous geometry is still an open question. Such a 
logic was investigated by several practitioners of quantum mechanics [1, 2, 
8-17, 20-22, 24-33]. Randall and Foulis [26] introduced a new type or logic 
called an orthologic, one in which the execution of more than one physical 
experiments is permissible. This logic was then investigated by Barbara [3, 
4]. Accordi Luigi [20] provides a historical account of development of a 
coherent quantum probabilistic approach to the foundation of quantum 
mechanics. According to Plotnitsky quantum mechanics is a probabilistic 
theory of individual quantum events rather than a statistical theory of 
ensemble [25]. A. Doring and C. Isham [11] considered intuitionistic logic 
(i.e. dual Broweian logic) to study a non-classical physical system. Almost 
all logics associated with quantum mechanics are orthologic in which the 
notion of compatibility can be introduced in the same way as it was 
introduced by Mackey [21, p. 70] and the notion of observable in the same 
way as by Varadarajan [29, p. 108]. 

Our endeavour here is to study the theory of probability on a 
pseudocomplemented lattice which is a basic ingredient of intuitionistic 
logic. The terminolosics used in this paper are available in [5, 23, 18]. 
1. Probability on a Lattice 

We introduce here the notion of probability on an arbitrary 
bounded lattice which may be useful to study a non-classical physical 
system. 
Definition 1.1 : A probability lattice denoted by p-lattice is a lattice L with a 

real valued function p on L satisfying the following properties : 

(i)  p is strictly positive, i.e., p(x) > 0, x  L  and p(x) = 0 iff x = 0 
 where 0 is the zero element of L. 

(ii)  p is normed, i.e., e  L  p(e) = 1,  
 where e is the unit element of L; 
(iii) p is additive, 

i.e.  p(a  b) = p(a) + p(b), where a and b are disjoint elements of L. 
Theorem 1.1. (i) p is monotonic 

(ii) The probability on a pseudocomplemented lattice is a valuation. 
(iii) p(x*) = 1 – p(x) where x* is the pseudocomplement of x in L. 

(iv) If ā is the local closure of a  L, 

i.e. ā = {x** : x ≤ a}. Then p(ā) = 1 – p(a*). 

Proof. (i) If z = y  x*, then y = x  z where x and z are disjoint. 

Abstract 

   It is remarkable and uncontroversial that quantum mechanics 
needs neatly a generalisation of classical probability in which the role 

played by Boolean -algebra of events is taken over the quantum logic 
of projection operators on a Hilbert space. The probability on a quantum 

logic is more complex than its classical concept on a Boolean -algebra. 
In this paper our purpose is to introduce a new concept of probability on 
a lattice L which is a generalisation of the classical theory. 
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We have p(y) = p(x) + p(z) 
 i.e.  p(x) ≤ p(y) 

 If x  y, then z  0 and p(z) > 0 
 i.e.  p(x) < p(y) 

(ii) Here we shall prove that for every pair x, y  
L, 

 p(x) + p(y) = p(x  y) + p(x  y) 

 We have  x  y = (x  y*)  

(y  x*)  (x  y). 
The terms of the join under the parentheses 

on the right are pairwise disjoint. 

 p(x  y) = p(x  y*) + p(y  x*) + p(x 

 y) 

Now, x = (x  y*)  (x  y) 

  p(x) = p(x  y*) + p(x  y) 

  p(x  y*) = p(x) – p(x  y) 

  p(x  y) = p(x) – p(x  y) + p(y) – 

p(x  y) + p(x  y)  

 i.e. p(x) + p(y) = p(x  y) + p(x  y)  

(iii) x  x* = 0 

 p(x  x*) = p(x) + p(x*) 

  p(e) = p(x) + p(x*) 

  p(x*) = 1 – p(x) 
(iv) Remember that an element k of a lattice L is 

compact if for any set X  L such that k ≤ X, 

there exists a finite Y  X such that k  Y. An 

element a  L is locally closed if for each 
compact element k ≤ a it holds k** ≤ a. Further 
we put ā =  {k** : k ≤ a} and call ā the local 

closure of a. Obviously every closed element is 

locally closed. If a  L. Then ā is the least locally 

closed element ≥ a and the map x  x  is a 

closure operation on L. To prove this result we 

see that if a  b and b is a locally closed element. 

Then ā  b. Let us show that ā is locally closed. 

Let l  ā be compact. Then there is a k  a such 

that l  k** and consequently l**  k**  ā. The 
last assertion is trivially true. Hence a is locally 
closed iff a = ā. The rest of the proof is a direct 

consequence of the previous result. 
Definition 1.2. Let (L, p) be a probability lattice and 

L0, a sublattice of L, then the restriction of p to L0 
is a probability on L0. The probability lattice (L0, p) 
is then called a probability sublattice of (L, p). 

If L0 is a non-empty subset of L, then there 
exists a smallest sublattice of L containing L0, the 
probability lattice is then called p-sublattice generated 
by L0 in (L, p). 
Definition 1.3. A lattice L is isomorphic to a set lattice 
of all principal ideals generated by each element of L 
which with a set probability p is called a lattice 

probability space. 
Definition 1.4. Let (L, p) be a p-lattice. The probability 

p is said to be countably additive or         -additive on 
L iff for every countable sequence av, v = 1, 2, … of 
pairwise disjoint elements in L, we have 

1
a a , exists and  

1

( ) ( )p a p a  

A p-lattice is said to be p-  lattice iff the 

lattice L is a -lattice and probability p is   -additive 
on L. 
2. Homometrization and seperability 
Definition 2.1. A probability lattice (L1, p1) is said to 

homometric to (L2, p2) iff there exists a mapping 

 f : (L1, p1)  (L2, p2) 
such that f is a lattice homomorphism and 
 p1(x) = p2(f(x)) 

If the mapping f is a lattice isomorphism, 
then one of the p-lattice is said to be isometric with 
others. 
Definition 2.2. Let (L, p) be a probability lattice and L0 
a subset of L, then we say that L0 is          p-dense in 

L, iff for every x  L and for every positive real 

number  > 0, there exists an element a = a(x, )  L0, 

such that p(x  a) < . A p-lattice (L, p) is called p-
separable iff there exists a countable class C of 
elements of L, which is p-dense in L. 

Every p-sublattice of p-separable p-lattice is 
also p-separable. 
Theorem 2.1. The probability interval lattice (L, m) is 
m-seperable. 
Proof. Let L0 be a sublattice of L generated by the 

class of all intervals I  for every . Then L0 is a 
countable set and it is m-separable. 
Theorem 2.2. Let (L, p) be pseudocomplemented 

probability lattice. Let  be a real valued function 

defined on L  L as follows: 

 (a, b) = p(a  b) 

and (a, b) = 0 iff a = b. 
Then the following conditions hold for all a, b, 

c  L 

(i) (a, b)  0 and (a, b) = 0 iff a = b 

(ii) (a, b) = (b, a) 

(iii) (a, b)  (a, c) + (c, b)  
Proof. Here (i) and (ii) are trivially true.  

We shall prove (iii) 

We have (a, b) = p(a  b)  p(a) + p(b)  (from theorem 1.1(ii)). 

Also, p(a) + p(b)  (a  c) + (c  b) 

i.e. (a, b)  (a, c) + (c, b) 

Hence (iii) is true. 
Hence the lattice L can be considered as a 

metric topological space and the concept of metric 
convergence or equivalently p-convergence can be 

introduced in the usual way, namely, a sequence a   

L,  = 1, 2, ... is said to p-convergent to an element a 

if and only if 

 lim a a  

A p-convergent sequence a   L,  = 1, 2, ... 

satisfies the p-cauchy condition i.e. for every  > 0 , 

there exists a natural number N( ) such that 

 p(av  au) <  

for every  u, v  N( ), u = v + p, and 
p is a positive integer ≥ 1. 
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